|
|
|
|
Download
|
|
|
Selected peer-reviewed papers. The original abstract is provided. For full text you can either open the document (PDF) as a plugin or download it. |
|
| Delayed DPR: J Trauma (58)499, 2005 | |
Abstract:
BACKGROUND: After conventional resuscitation from hemorrhagic shock, splanchnic microvessels progressively constrict, leading to impairment of blood flow. This occurs despite restoration and maintenance of central hemodynamics. The authors' recent studies have demonstrated that topical and continuous ex vivo exposure of the gut microvasculature to a glucose-based clinical peritoneal dialysis solution (Delflex), as a technique of direct peritoneal resuscitation (DPR), can prevent these postresuscitation events when initiated simultaneously with conventional resuscitation. This study aimed to determine whether DPR applied after conventional resuscitation reverses the established postresuscitation intestinal vasoconstriction and hypoperfusion. METHODS: Male Sprague-Dawley rats were bled to 50% of baseline mean arterial pressure and resuscitated intravenously over 30 minutes with the shed blood returned plus two times the shed blood volume of saline. Initiation of ex vivo, topical DPR was delayed to 2 hours (group 1, n = 8), or to 4 hours (group 2, n = 8), respectively, after conventional resuscitation. Intravital microscopy and Doppler velocimetry were used to measure terminal ileal microvascular diameters of inflow A1 and premucosal A3 (proximal pA3, distal dA3) arterioles and blood flow in the A1 arteriole, respectively. Maximum arteriolar dilation capacity was obtained from the topical application, in the tissue bath, of the endothelium-independent nitric oxide-donor sodium nitroprusside (10M). RESULTS: Hemorrhagic shock caused a selective vasoconstriction of A1 (-24.1% +/- 2.15%) arterioles from baseline, which was not seen in A3 vessels. This caused A1 blood flow to drop by -68.6% of the prehemorrhage value. Conventional resuscitation restored and maintained hemodynamics in all the animals without additional fluid therapy. In contrast, there was a generalized and progressive postresuscitation vasoconstriction of A1 (-21.7%), pA3 (-18.5%), and dA3 (-18.7%) vessels. The average postresuscitation A1 blood flow was -49.5% of the prehemorrhage value, indicating a persistent postresuscitation hypoperfusion. Direct peritoneal resuscitation reversed the postresuscitation vasoconstriction by 40.9% and enhanced A1 blood flow by 112.9% of the respective postresuscitation values. CONCLUSIONS: Delayed DPR reverses the gut postresuscitation vasoconstriction and hypoperfusion regardless of the initiation time. This occurs without adverse effects on hemodynamics. Direct peritoneal resuscitation-mediated enhancement of tissue perfusion results from the local effects from the vasoactive components of the Delflex solution, which are hyperosmolality, lactate buffer anion, and, to a lesser extent, low pH. The molecular mechanism of this vasodilation effect needs further investigation. |
 |
|
| DPR effects on survival. Surg. (136)900, 2004. | |
Abstract:
BACKGROUND: Conventional resuscitation (CR) from hemorrhagic shock often culminates in multisystem organ failure and death, commonly attributed to a progressive splanchnic vasoconstriction and hypoperfusion, a gut-derived systemic inflammatory response (SIR), and fluid sequestration. Direct peritoneal resuscitation (DPR) produces a sustained state of tissue hyperperfusion in splanchnic and distant organs. In this study we evaluated the therapeutic potential of DPR on the SIR and fluid sequestration as parameters of treatment outcome. METHODS: Anesthetized nonheparinized rats continuously monitored for hemodynamics were bled to 40% of mean arterial pressure for 60 minutes. Animals were randomized for CR or CR plus DPR under aseptic conditions. Sham nonhemorrhaged rats served as control. Qualitatively, animals were blindly observed for body weight, illness score, or death for 72 hours. Tissues were harvested from survivors, and SIR was measured by interleukin (IL)-6, IL-10, tumor necrosis factor-alpha, and enzyme-linked immunosorbent assay, and fluid sequestration was measured by dry weight/wet weight ratio (DW/WW). RESULTS: Adjunct DPR caused a marked increase (P >.01 by analysis of variance) in the immunoregulator IL-10 in the liver (10,990 +/- 1,470 pg/g) and gut (1815 +/- 640 pg/g), compared to CR rats (6450 +/- 1000 pg/g and 1555 +/- 590, respectively), which is associated with down-regulation of IL-6 and tumor necrosis factor-alpha in liver and gut, from 57 +/- 4 and 20 +/- 3 pg/g, respectively, to 42 +/- 4 and 9 +/- 2 pg/g in DPR-treated animals. CR animals had a lower DW/WW ratio in liver (-36%), spleen (-22%), and lung (-24%) compared to DPR (P <.05), where the DW/WW ratio did not differ from control animals. This fluid sequestration is consistent with a 12% and 5% gain in prehemorrhage body weight at 24 and 72 hours after treatment in the CR animals. Thirty percent of CR animals died within 24 hours, and survivors were squeaking, cold, and pale in eyes and ears and oliguric despite features of fluid overload. In comparison, DPR animals exhibited normal appearance by 24 hours and demonstrated a 100% survival at 72 hours. CONCLUSIONS: This study demonstrates that DPR as adjunct to CR has beneficial effects on the pathophysiology of resuscitated hemorrhagic shock. In addition to restoration of tissue perfusion, DPR has immunomodulation and anti-fluid sequestration effects. These modulations result in improved outcome |
 |
|
| Direct intracellular high energy delivery. Surg. (138)195, 2005 | |
Abstract:
BACKGROUND: Conventional resuscitation (CR) from hemorrhagic shock (HS) does not restore intestinal blood flow. Indicators of anaerobic metabolism suggest that cellular energy production also is compromised. We hypothesize that the direct intravenous delivery of lipid-encapsulated high-energy phosphates to cells improves intestinal perfusion during HS and resuscitation (RES). METHODS: MAP (MAP) was monitored in male rats (200 g), terminal ileum microvessel diameters were measured by in vivo videomicroscopy, and blood flow (Doppler velocimetry) was calculated. Cellular energy delivery was accomplished by intravenous infusion during RES of fusogenic unilamellar lipid vesicles that contain adenosine triphosphate (ATP; VitaSol). Our protocol was HS to 50% baseline MAP for 60 minutes, 30 minutes of RES, and continued microscopy observation for 120 minutes. Experimental groups (n=8 each) were HS+CR (group I); HS+CR+ VitaSol (group II); HS+CR+Vehicle, Vehicle is the phospholipid vesicles without magnesium ATP, (group III); HS+ VitaSol (group IV); sham-operated control+VitaSol (group V); and a time-matched sham-operated control (group VI). The survival outcome and total tissue water from wet weight/dry weight ratio as a function of adjunct VitaSol resuscitation were evaluated in separate intact animal experiments. RESULTS: HS caused a selective vasoconstriction of the intestinal inflow arterioles (100 microm), which was not seen in the smaller intestinal premucosal arterioles (7-15 microm). CR, which restored baseline hemodynamics, resulted in an initial restoration of intestinal microvascular diameters at all arteriolar levels. However, this was followed by a progressive vasoconstriction and hypoperfusion in premucosal vessels at 120 minutes after RES (-20.48% +/- 2.95% from baseline diameters). In contrast, VitaSol with CR caused enhanced premucosal dilation (+34.27% +/- 4.62%) and augmented flow (+20.50% +/- 10.70%) above prehemorrhage baseline. Vesicles alone had no effect, and VitaSol alone caused only a modest dilation. CR of moderate HS (40% of baseline MAP for 60 minutes, n=10) caused 20% mortality, whereas adjunct VitaSol resuscitation had a 100% survival and less tissue water content. CONCLUSIONS: Our data confirms that CR causes progressive intestinal hypoperfusion. Cellular resuscitation with direct intravenous energy delivery improves intestinal perfusion after CR and results in improved survival and less tissue edema. |
 |
|
| DPR efeects on organ blood flow. Am J Surg (186)443, 2003. | |
Abstract:
BACKGROUND: After resuscitation from hemorrhagic shock, intestinal microvessels constrict leading to impairment of blood flow. This occurs despite restoration and maintenance of central hemodynamics. Our recent studies have demonstrated that topical and continuous exposure of the gut microvasculature to a clinical solution (Delflex; Fresenius Medical Care), as a technique of direct peritoneal resuscitation (DPR), reverses the postresuscitation vasoconstriction and hypoperfusion to a sustained dilation and hyperperfusion. We hypothesize that initiation of DPR simultaneously with resuscitation from hemorrhagic shock enhance organ blood flow to all tissues surrounding the peritoneal cavity as well as distant organs. METHODS: Male Sprague-Dawley rats were anesthetized, intubated and cannulated for monitoring of hemodynamics and for withdrawal of blood. Rats were hemorrhaged to 50% of mean blood pressure for 60 minutes prior to resuscitation with shed blood plus 2 volumes of saline. Animals were randomized for intraperitoneal therapy with 30 mL saline (group 1, n = 9), or Delflex (group 2, n = 9). Whole organ blood flow was measured by colorimetric microsphere technique with phantom organ at baseline, after completion of resuscitation, and at 120 minutes postresuscitation. Replenishment of the dwelling intraperitoneal saline or Delflex was performed in (group 3, n = 8), and (group 4, n = 8), respectively at 90 minutes postresuscitation, and a single whole organ blood flow was performed at 120 minutes postresuscitation. RESULTS: Direct peritoneal resuscitation caused a significant increase in blood flow to the jejunum (35%), ileum (33%), spleen (48%), and pancreas (57%), whereas a marked increase in blood flow was detected in the lung (111%), psoas major muscle (115%), and diaphragm (132%), as compared with the saline treated animals in group 1. At 120 minutes postresuscitation, organ blood flow returned to the prehemorrhagic shock baseline level in all organs irrespective of peritoneal therapy. Replenishment of the intraperitoneal solution in group 3 and 4, enhanced blood flow to the liver, kidneys, and diaphragm. CONCLUSIONS: Direct peritoneal resuscitation enhanced blood flow to organs incited in the pathogenesis of multiple organ failure that follows hemorrhagic shock. |
 |
|
| DPR-induced intestinal hyperperfusion, Ann Surg (237)704, 2003. | |
Abstract:
OBJECTIVE: To study the effects of peritoneal resuscitation from hemorrhagic shock. SUMMARY BACKGROUND DATA: Methods for conventional resuscitation (CR) from hemorrhagic shock (HS) often fail to restore adequate intestinal blood flow, and intestinal ischemia has been implicated in the activation of the inflammatory response. There is clinical evidence that intestinal hypoperfusion is a major factor in progressive organ failure following HS. This study presents a novel technique of peritoneal resuscitation (PR) that improves visceral perfusion. METHODS: Male Sprague-Dawley rats were bled to 50% of baseline mean arterial pressure (MAP) and resuscitated with shed blood plus 2 equal volumes of saline (CR). Groups were 1) sham, 2) HS + CR, and 3) HS + CR + PR with a hyperosmolar dextrose-based solution (Delflex 2.5%). Groups 1 and 2 had normal saline PR. In vivo videomicroscopy and Doppler velocimetry were used to assess terminal ileal microvascular blood flow. Endothelial cell function was assessed by the endothelium-dependent vasodilator acetylcholine. RESULTS: Despite restored heart rate and MAP to baseline values, CR animals developed a progressive intestinal vasoconstriction and tissue hypoperfusion compared to baseline flow. PR induced an immediate and sustained vasodilation compared to baseline and a marked increase in average intestinal blood flow during the entire 2-hour post-resuscitation period. Endothelial-dependent dilator function was preserved with PR. CONCLUSIONS: Despite the restoration of MAP with blood and saline infusions, progressive vasoconstriction and compromised intestinal blood flow occurs following HS/CR. Hyperosmolar PR during CR maintains intestinal blood flow and endothelial function. This is thought to be a direct effect of hyperosmolar solutions on the visceral microvessels. The addition of PR to a CR protocol prevents the splanchnic ischemia that initiates systemic inflammation. |
 |
|
| Blood for shock resuscitation. Shock (18)567, 2002. | |
Abstract:
Endothelial cell dysfunction occurs during hemorrhagic shock (HS) and persists despite adequate resuscitation (RES) that restores and maintains hemodynamics. We hypothesize that RES from HS with crystalloid solutions alone aggravate the endothelial cell dysfunction. To test this hypothesis, anesthetized nonheparinized rats were monitored for hemodynamics, and the terminal ileum was studied with intravital video microscopy. HS was 50% of mean arterial pressure (MAP) for 60 min. Four hemorrhaged groups (10 animals in each group) were randomized for RES: group I with shed blood returned + equal volume of normal saline (NS); group II with shed blood returned + 2x NS; group III with 2x NS only; and group IV with 4x NS only. Two hours post-RES, endothelial cell function was assessed with the endothelial-dependent agonist acetylcholine (ACh, 10(-9)-10(-4) M). Maximum arteriolar diameter was elicited by the endothelial-independent agonist sodium nitroprusside (NTP, 10(-4) M). HS caused a selective vasoconstriction associated with low blood flow in inflow A1 arterioles in all hemorrhaged groups. Post-RES vasoconstriction developed in A1 and premucosal arterioles (pA3 and dA3) In all hemorrhaged groups regardless of the RES regimen. However, A1 vasoconstriction and flow were significantly worst in the animals RES with NS alone (-43% and -75%, respectively) compared with those resuscitated with blood and NS (-27% and -57%). Impaired dilation response to ACh was noted in all hemorrhaged animals. However, a significant shift to the right of the dose-response curve (decreased sensitivity) was observed in the animals resuscitated with NS alone irrespective of the RES volume. These animals required at least two orders of magnitude greater ACh concentration to produce a 20% dilation response. For all vessel types, Group II had the best preservation of endothelial cell function. In conclusion, HS causes a selective vasoconstriction of A1 arterioles, which was not observed in A3 vessels. RES from HS results in progressive vasoconstriction in all intestinal arterioles irrespective of the RES regimen. Crystalloid RES after HS does not restore hemodynamics to baseline and is associated with a marked endothelial cell dysfunction. Blood-containing RES regimens preserve and maintain hemodynamics and are associated with the least microvascular dysfunction. Therefore, regimens for RES from HS must contain blood. Endothelial cell dysfunction is not the sole etiologic factor of post-RES microvascular impairment. |
 |
|
|
|
Abstract: Disparity in Osmolarity-Induced Vascular Reactivity
Conventional peritoneal dialysis solutions (PDS) are vasoactive. This study was conducted to identify vasoactive components of PDS and to describe quantitatively such vasoactivity. Anesthetized nonheparinized rats were monitored continuously for hemodynamics while the microvasculature of the jejunum was studied with in vivo intravital microscopy. In separate experiments, vascular reactivity of rat endothelium-intact and -denuded aortic rings (2 mm) was studied ex vivo in a standard tissue bath. In both studies, suffusion of the vessels was performed with filter-sterilized isotonic and hypertonic solutions that contained glucose or mannitol as osmotic agents. PDS served as a control (Delflex 2.25%). Hypertonic glucose and mannitol solutions produced a significant vascular reactivity in aortic rings and instantaneous and sustained vascular relaxation at all levels of the intestinal microvasculature. Similarly, lactate that was dissolved in a low-pH isotonic physiologic salt solution produced significant force generation in aortic rings. Whereas isotonic glucose and mannitol solutions had no vasoactivity in aortic rings, isotonic glucose produced a selective, insidious, and time-dependent vasodilation in the intestinal premucosal arterioles (18 +/- 0.2% of baseline), which was not observed in the larger inflow arterioles (100 microm). This isotonic glucose-mediated vascular relaxation can be attenuated by approximately 50% with combined adenosine A2a and A2b receptor antagonists and completely abolished by adenosine A1 receptor inhibition. By using two different experimental techniques, this study demonstrates that hyperosmolality and lactate are the major vasoactive components of clinical peritoneal dialysis solutions. The pattern and the magnitude of such reactivity are dependent on vessel size and on the solutes' metabolic activity. Low pH of conventional PDS is not a vasoactive component by itself but renders lactate vasoactive. Energy-dependent transport of glucose into cells mediates vasodilation of small visceral arterioles by an adenosine receptor-mediated mechanism and constitutes a significant fraction of PDS-mediated vascular reactivity in the visceral microvasculature |
 |
|
| Adv Perit Dial. 2004;20:177-83. | |
Abstract: Peritoneal dialysis solutions contract arteries through endothelium-independent prostanoid pathways
Conventional peritoneal dialysis solution (PDS) relaxes visceral and parietal peritoneal arterioles (microvessels) by unclear mechanisms. The present study was originally designed to investigate the mechanisms of PDS-mediated vascular reactivity. Surprisingly, our preliminary data indicated that PDS induces contraction in large vessels such as the aorta. That result contrasts with the relaxation observed in the microvasculature. We therefore extended the study to (1) determine the effect of PDS on the superior mesenteric artery (SMA), (2) confirm the PDS-induced contraction in the aorta, and (3) determine if a prostanoid and nitric oxide are involved in the observed PDS-induced vessel response. Rat SMA rings with intact endothelium and aortic rings with and without endothelium were prepared and placed in baths filled with a non vasoactive physiologic salt solution (PSS), or with PSS plus mefenamic acid (MFA, a cyclo-oxygenase inhibitor), or PSS plus NG-monomethyl-L-arginine (L-NMMA, an inhibitor of nitric oxide synthase) under a force transducer. We recorded changes in tension throughout the protocols. After equilibration, the baths were filled with a conventional glucose-based PDS (Delflex 2.5%: Fresenius Medical Care, Bad Homburg, Germany) with and without MFA or L-NMMA for 30 minutes. The rings were then washed, contracted with phenylephrine, and relaxed with acetylcholine to verify the presence or absence of endothelium. In both SMA and aorta, PDS induced contraction. That contraction was suppressed by MFA [SMA: 0.57 g vs. 0.13 g (+/- 0.035 g); aorta: 0.88 g vs. 0.27 g (+/- 0.035 g); p < 0.05 by analysis of variance (ANOVA)]. Aortic contraction induced by PDS was not altered by L-NMMA. Conventional PDS induces contraction in large vessels, in contrast to its action of relaxation in microvessels. Vascular reactivity in large vessels involves the production of a constrictor prostanoid in the vascular smooth muscle. Peritoneal dialysis solutions do not induce NO in aortic endothelium. Peritoneal dialysis solution-induced, prostanoid-mediated contraction of smooth muscle may contribute to a worsening of hypertension and the premature uterine contractions observed in the rare cohort of pregnant uremic patients on peritoneal dialysis.
|
 |
|
| Shock. 2004 Mar;21(3):248-53. | |
Abstract: Role of neutrophils on shock/resuscitation-mediated intestinal arteriolar derangements.
Zakaria E.R, Garrison RN, Kawabe T, Harris PD.
Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40292, USA. [email protected]
Adequate resuscitation from hemorrhagic shock that preserves hemodynamics is associated with a generalized and progressive intestinal arteriolar vasoconstriction and hypoperfusion coupled with impairment of the endothelium-dependent dilation response. This study was performed to investigate the role of neutrophils on the postresuscitation intestinal arteriolar derangements. Experiments were performed in anesthetized rats 24 h after neutrophil depletion. Neutropenia was induced with antineutrophil serum by tail vein injection. Rats injected with rabbit serum lacking anti-rat neutrophil antibody served as controls. Hemorrhagic shock was 50% of mean arterial pressure for 60 min. Resuscitation was with the shed blood returned plus 2 volumes of saline. A nonhemorrhage group served as control. Intravital videomicroscopy of the terminal ileum was used to measure microvascular diameter and centerline red cell velocity. Endothelial function was assessed from the response to the endothelium-dependent dilator acetylcholine (10(-9) to 10(-4) M). Regardless of neutrophil count, hemorrhagic shock caused selective vasoconstriction of inflow A1 arterioles (-21.49 +/- 0.67%) from baseline, which was not seen in the premucosal A3 vessels (pA3, dA3). At 2 h postresuscitation, there was a generalized vasoconstriction from baseline diameter in A1 (-21.26 +/- 2.29%), pA3 (-22.66 +/- 5.02%), and dA3 (-17.62 +/- 4.84%). Neutrophil depletion caused a significant reset of baseline A1 blood flow from 701 +/- 90 nL/s to 978 +/- 90 nL/s and attenuated the postresuscitation hypoperfusion. This occurred independently of the A1 diameter change. Hemorrhagic shock/resuscitation caused impairment of the endothelium-dependent dilation response irrespective of neutrophil count. This study demonstrates that neutrophils do not contribute to the hemorrhagic/resuscitation-mediated intestinal arteriolar derangements, but appear to possess a role in the intestinal arteriolar blood flow regulation under normal and low flow states possibly via a rheologic effect.
|
 |
|
| Shock. 2004 Feb;21(2):175-81 | |
Abstract: Impairment of endothelium-dependent dilation response after resuscitation from hemorrhagic shock involved postreceptor mechanisms.
Zakaria E.R, Garrison RN, Spain DA, Harris PD.
Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40292, USA. [email protected]
Resuscitation from hemorrhagic shock is associated with impairment of the endothelium-dependent dilation response, whereas the dilation response induced by the endothelium-independent pathway, which is mediated by nitroprusside, a nitric oxide (NO) donor and a direct activator of guanylate cyclase, remains unaltered. Whether the impairment of the endothelium-dependent dilation response is caused by a specific receptor alteration or generally a defect in signal transduction pathway remains undetermined. Anesthetized rats were monitored for hemodynamics, and the terminal ileum was prepared for intravital videomicroscopy. Hemorrhage was 50% of mean arterial pressure for 60 min followed by resuscitation with the shed blood returned plus 2 volumes of normal saline. Intestinal microvascular reactivity to the endothelium-dependent receptor-dependent agonists acetylcholine or substance P (10(-8) or 10(-6) M), as well as the endothelium-dependent receptor-independent calcium ionophore, was determined at baseline and at 2 h postresuscitation from hemorrhagic shock. Measured vascular diameters for premucosal A3 arterioles (pA3 and dA3) were normalized and expressed as percentage of the maximal dilation capacity, as obtained from the response to the endothelium-independent NO donor sodium nitroprusside (10(-4) M). At 2 h postresuscitation, there was a marked constriction of pA3 (-70.1 +/- 20) and dA3 (-61.5 +/- 11.6) from maximal dilation capacity. Baseline premucosal arteriolar response to substance P (10(-8) M) was 30.68 +/- 4.19% and 34.66 +/- 5.82% for pA3 and dA3 arterioles, respectively. This was significantly reduced to 20.97 +/- 2.41% and 17.94 +/- 3.60% at 2 h postresuscitation. However, no significant difference between baseline and postresuscitation arteriolar responses was observed at the higher dose of substance P (10(-6) M). Postresuscitation premucosal arteriolar response to the endothelium-dependent receptor-independent calcium ionophore (10(-9) to 10(-5) M) is characterized by a marked decrease in sensitivity and an enhanced threshold for calcium ionophore-mediated dilation. The logEC50 was -7.62 +/- 0.39 and -7.75 +/- 0.32 for the pA3 and dA3 at baseline, respectively. This was significantly (P < 0.01) reduced to -5.15 +/- 0.14 and -4.39 +/- 0.71 at 2 h postresuscitation. These data suggest that impairment of the endothelium-dependent dilation response after resuscitation from hemorrhagic shock is not mediated by specific receptor alteration. Cellular mechanisms that participate in or are part of oxygen free radical formation after resuscitation from hemorrhagic shock such as Ca2+ and leukocytes, appear to have a pivotal role in the mechanism of cellular dysfunction.
|
 |
|
| Am J Physiol. 1997 Dec;273(6 Pt 2):H2774-82 | |
In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure.
Zakaria E.R, Lofthouse J, Flessner MF.
Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642, USA.
We and others have shown that the loss of fluid and macromolecules from the peritoneal cavity is directly dependent on intraperitoneal hydrostatic pressure (Pip). Measurements of the interstitial pressure gradient in the abdominal wall demonstrated minimal change when Pip was increased from 0 to 8 mmHg. Because flow through tissue is governed by both interstitial pressure gradient and hydraulic conductivity (K), we hypothesized that K of these tissues varies with Pip. To test this hypothesis, we dialyzed rats with Krebs-Ringer solution at constant Pip of 0.7, 1.5, 2.2, 3, 4.4, 6, or 8 mmHg. Tracer amounts of 125I-labeled immunoglobulin G were added to the dialysis fluid as a marker of fluid movement into the abdominal wall. Tracer deposition was corrected for adsorption to the tissue surface and for local loss into lymphatics. The hydrostatic pressure gradient in the wall was measured using a micropipette and a servo-null system. The technique requires immobilization of the tissue by a porous Plexiglas plate, and therefore a portion of the tissue is supported. In agreement with previous results, fluid flux into the unrestrained abdominal wall was directly related to the overall hydrostatic pressure difference across the abdominal wall (Pip = 0), but the interstitial pressure gradient near the peritoneum increased only approximately 40% over the range of Pip = 1.5-8 mmHg (20-28 mmHg/cm). K of the abdominal wall varied from 0.90 +/- 0.1 x 10(-5) cm2.min-1.mmHg-1 at Pip = 1.5 mmHg to 4.7 +/- 0.43 x 10(-5) cm2.min-1.mmHg-1 on elevation of Pip to 8 mmHg. In contrast, for the same change in Pip, abdominal muscle supported on the skin side had a significantly lower range of fluid flux (0.89-1.7 x 10(-4) vs. 1.9-10.1 x 10(-4) ml.min-1.cm-2 in unsupported tissue). The differences between supported and unsupported tissues are likely explained in part by a reduced pressure gradient across the supported tissue. In conclusion, the in vivo hydraulic conductivity of the unsupported abdominal wall muscle in anesthetized rats varies with the superimposed hydrostatic pressure within the peritoneal cavity.
|
 |
|
| Am J Physiol. 1999 Feb;276(2 Pt 2):H517-29 | |
Abstract: In vivo effects of hydrostatic pressure on interstitium of abdominal wall muscle.
Zakaria ER, Lofthouse J, Flessner MF.
Nephrology Unit, Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA.
Fluid loss from the peritoneal cavity to surrounding tissue varies directly with intraperitoneal hydrostatic pressure (Pip). According to Darcy's law [Q = -KA(dPif/dx)], fluid flux (Q) across a cross-sectional area (A) of tissue will increase with an increase in either hydraulic conductivity (K) or the interstitial fluid hydrostatic pressure gradient (dPif/dx, where x is distance). Previously, we demonstrated that in the anterior abdominal muscle (AAM) of rats, dPif/dx increases by only 40%, whereas K rises fivefold between Pip of 1.5 and 8 mmHg. Because K is a function of interstitial volume (thetaif), we hypothesized that perturbations of Pip would change Pif and expand the interstitium, increasing thetaif. To test this hypothesis, we used dual-label quantitative autoradiography (QAR) to measure extracellular fluid volume (thetaec) and intravascular volume (thetaiv) in the AAM of rats within the Pip range from -2.8 to +8 mmHg. thetaif was obtained by subtraction (thetaec - thetaiv). dPif/dx was measured with a micropipette and a servo-null system. Local thetaiv did not vary with Pip and averaged 0.010 +/- 0.002 ml/g, and thetaif averaged 0. 19 +/- 0.01 ml/g at Pif </=1.2 mmHg. However, thetaif doubled between Pif of 1.2 and 4.2 mmHg (from 0.20 +/- 0.00 to 0.39 +/- 0.01 ml/g, respectively) but did not increase with further increases in Pif. This nonlinear pressure-volume relationship does not explain the fivefold increase in K with Pip. Because the interstitial matrix contributes to the interstitial resistance to fluid flow, and because hyaluronan (HA) is the only component of the matrix that is not anchored to the tissue, we hypothesized that the loss of interstitial HA was responsible for the continued decrease in interstitial resistance to fluid flow. We determined HA concentration in the rat AAM and adjacent subcutaneous tissue (SC) at Pip = 0 mmHg and after 2 h of dialysis at constant Pip = 6 mmHg. The HA content (normalized to dry weight) in the AAM was reduced from 487 +/- 16 to 360 +/- 27 micrograms/g dry tissue (n = 4, P < 0.05) and increased from 528 +/- 72 to 1,050 +/- 136 mg/g dry tissue (n = 4, P > 0.001) in the SC. We conclude that the mechanisms responsible for the increase in K with Pip include expansion of the interstitium, dilution of interstitial macromolecules, and washout from the AAM to SC of interstitial macromolecules responsible for resistance to fluid flow.
|
 |
|
| Am J Physiol Renal Physiol. 2000 Jun;278(6):F875-85 | |
Abstract: Effect of intraperitoneal pressures on tissue water of the abdominal muscle.
Zakaria ER, Lofthouse J, Flessner MF.
Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
A major factor that affects solute and water transport through tissue is the state of tissue hydration. The amount of interstitial water directly affects the transport coefficients for both diffusion and convection. To investigate the effect of simultaneous exposure of tissue to hydrostatic and osmotic pressures on the state of tissue hydration and the pattern of distribution of tissue water, we dialyzed rats with isotonic (290 mosmol/kg) or hypertonic (510 mosmol/kg) solution at intraperitoneal pressures (P(ip)) between 0 and 6 mmHg, and we infused isotopic markers intravenously and determined their equilibrium distribution volumes (V(D)) in the anterior abdominal muscle (AAM) by quantitative autoradiography. Total tissue water volume (theta(TW)) was determined from dry-to-wet weight ratios. theta(urea), the V(D) of [(14)C]urea, equals the sum of the extracellular water volume (theta(EC), V(D) of [(14)C]mannitol) and intracellular water volume (theta(IC) = theta(urea) - theta(EC)). If theta(if) = interstitial water volume and theta(IV) = vascular water volume (V(D) of (131)I-labeled IgG), then theta(EC) = theta(if) + theta(IV). AAM hydrostatic pressure profiles were measured by a micropipette/servo-null system and demonstrated that elevation of P(ip) above 3 mmHg significantly (P < 0.05) increases mean tissue pressure (P(T)) to the same level regardless of intraperitoneal osmolality. The increase in P(T) resulted in a nonlinear tissue expansion primarily in the interstitium regardless of osmolality. From 0 to 6 mmHg, theta(if) (in ml/g dry tissue) increased from 0.59 +/- 0.02 to 1.7 +/- 0.05 and to 1.5 +/- 0.05 after isotonic and hypertonic dialysis, respectively, whereas theta(IC) increased from 2.8 +/- 0.08 to 3.0 +/- 0.1 after isotonic dialysis and decreased to 2.6 +/- 0.1 after hypertonic dialysis. After dialysis at 6 mmHg with isotonic or hypertonic solutions, theta(IV) increased from 0.034 +/- 0.001 to 0. 049 +/- 0.001 and 0.042 +/- 0.002, respectively. theta(urea) during hypertonic dialysis at P(ip) between 0 and 6 mmHg increased in a nonlinear fashion (F = 26.3, P < 0.001), whereas theta(IC) invariably decreased (F = 11.1, P < 0.001) and theta(if) doubled from its control value at low P(ip). In conclusion, elevation of intraperitoneal hydrostatic pressure causes tissue expansion, primarily in interstitium, irrespective of osmolality of the bathing solution. Tissue hydrostatic pressure is therefore the primary determinant of tissue properties with respect to hydration, which in turn affects diffusive and convective transport.
|
 | |
| |